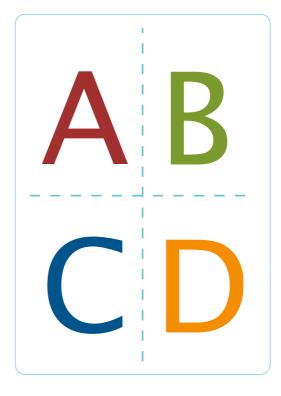


Nat. Sci. Engineering Language Culture Humanities Art Music Law Soc. Sci.

TUHH

A B C D Cards


12.05.2016

Please fold along center creases, any directions you like.

When you vote, refold in order to have your choice be visible.

Upon request hold up you vote accordingly.

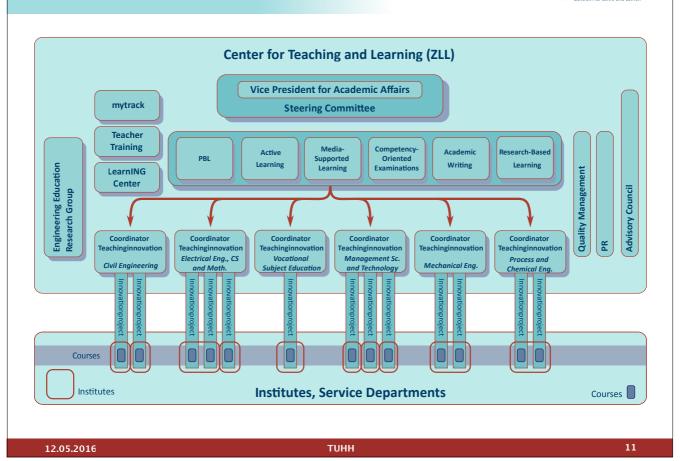
MC I - Cards

Which of the following statements best meets your expectations?

- A. Finding similarities of activating methods
- B. Critically scrutinizing activating methods
- C. Discovering factors impacting the successful application of activating methods
- D. Getting to know several activating methods

TUHH - Hamburg

12.05.2016 TUHH


Student retention: TUHH's Measures

- LearnING Center
- Interdisciplinary Bachelor Project
- readySTEMgo Early identification of STEM readiness and targeted academic interventions
- mytrack extended first years of study
- ContinuING Continuing Education
- HOOU Hamburg Open Online University
- Center for Teaching and Learning (ZLL)

Organigram of ZLL and its Core Tasks

MC II - Baseball Bat

A student balances a baseball bat of uniform mass density.

Point P is directly above the point where the bat is balanced, that is P is the center of mass.

If the bat were cut through P perpendicular to its long axis, the mass of the left piece would be ...

- A. ... less than the mass of the right piece.
- B. ... more than the mass of the right piece.
- C. ... equal to the mass of the right piece.
- D. I'm not sure which answer is correct.

12.05.2016 TUHH 13

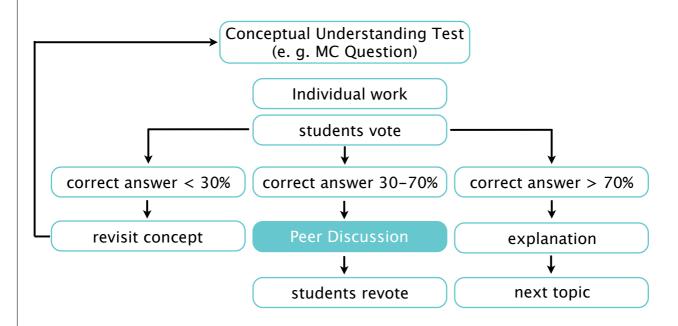
Think - Pair - Share: Method

- 1. Everyone works and thinks on the problem individually first!
- 2. Everyone finds a partner and shares their ideas and thoughts with him/her. Important: Identify similarities and differences!
- 3. The approaches and solutions from part 2 are presented to, and discussed with another group.

^{*} L. Ortiz, P. Heron u. P. Shaffer, Am. J. Phys. 73, 545 (2005).

Think - Pair - Share: Assignment

Please compare the first vote (your expectation) with the Peer Instruction–Demonstration (baseball bat).


- · What did you notice?
- In how far do the two approaches differ from one another?
- What advantages and disadvantages do you see in the two approaches?

Please take notes on the group results!

12.05.2016 TUHH 15

Peer Instruction Implementation Process

^{*} Lasry, N., Mazur, E., Watkins, J. (2008). Peer instruction: From Harvard to the two-year college. In: American Journal of Physics 2008, Band 76, S. 1066-1069.

Open topics

- Design of Clicker Questions
- JITT Just in Time Teaching (Concept of wrapping)
- Constructive Alignment

Take Home Message I

Similiarities of activating methods

- ✓ Learners actively (cognitively) occupy themselves with the contents
- ✓ Large proportion of "real learning time"/ Time on Task
- ✓ Opportunities for exchange and discussion (Interaction)
- √ Teachers and students recieve feedback on students' current level of knowledge

12.05.2016 TUHH 19

Take Home Message II

Success factors of activating methods

- ✓ Clarity concerning the goals of implementing the method
- ✓ Transparency: WHY am I using this method!
- ✓ Alignment of intended learning outcomes, teaching and assessment methods (Biggs, 2003)
- ✓ Didactic embedding of the methods
- ✓ Attitude of the teachers
- ✓ Active role of the students